
doc/TritonDev

doc/TritonDev ii

COLLABORATORS

TITLE :

doc/TritonDev

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

doc/TritonDev iii

Contents

1 doc/TritonDev 1

1.1 doc/TritonDev.guide . 1

1.2 TritonDev.guide/INT_OVE . 2

1.3 TritonDev.guide/INT_OOP . 3

1.4 TritonDev.guide/INT_CLA . 3

1.5 TritonDev.guide/INT_AUT . 4

1.6 TritonDev.guide/TUT_APP . 5

1.7 TritonDev.guide/TUT_PRO . 6

1.8 TritonDev.guide/TUT_MEN . 8

1.9 TritonDev.guide/TUT_OBJ . 9

1.10 TritonDev.guide/TUT_LAY . 10

1.11 TritonDev.guide/TUT_MAC . 11

1.12 TritonDev.guide/TUT_POL . 12

1.13 TritonDev.guide/TUT_MES . 14

1.14 TritonDev.guide/TUT_HEL . 14

1.15 TritonDev.guide/TUT_REQ . 15

1.16 TritonDev.guide/STY_OVE . 16

1.17 TritonDev.guide/ODD_FAQ . 17

1.18 TritonDev.guide/Index . 17

doc/TritonDev 1 / 19

Chapter 1

doc/TritonDev

1.1 doc/TritonDev.guide

**

Triton

Release 1.4

Developer Documentation

(c) 1993-1995 Stefan Zeiger

**

Introduction

Overview
Programming with Triton

OOP Internals
The internal working of Triton

Class Tree
Available classes

Autodocs
Notes on the autodocs

Tutorial - Step by Step

Applications
The key to Triton

Projects
Triton GUI windows

doc/TritonDev 2 / 19

Menus
Menus

Objects
Triton objects

Layout
The layout engine

Macros
Using the Triton GUI macros

Polling Loop
Handling GUI events

Messages
Sending messages

Help
Providing help

Requesters
Triton requesters

Style Guide

Guidelines
Guidelines for Triton GUIs

Odds & Ends

FAQ
Frequently Asked Questions

Index
Note that all pages can be reached directly from this menu, so ←↩

that
you may conveniently browse through all items in this main menu in
order to read the entire documentation.

1.2 TritonDev.guide/INT_OVE

Introduction

Overview
========

The Triton GUI creation system offers an easy way to create good
looking GUIs for your applications. It can be used with a variety of

doc/TritonDev 3 / 19

programming languages. Currently supported are the following languages
and development systems:

* C (SAS/C 6.50+, GCC (tested with 2.5.8 and 2.6.0), DICE)

* Oberon (AmigaOberon)

* Modula-2 (M2Amiga)

* E (AmigaE)

* Assembler

* Basic (BlitzBasic)

* Pascal (KickPascal, MaxonPascal)

Note that the Pascal interfaces are not yet included in this
release of the Triton developer package. Please contact the author
(Sotirios Pappas <sotto@trkpool.rhein-ruhr.de>) directly.

(If you create a Triton support system for any other language or
development system and are willing to maintain it for future updates,
please contact me for inclusion into the main Triton Developer
distribution.)

This document describes how to use Triton in your own applications
by providing you with some overview topics and a step by step
introduction. It does *not* describe in detail the functions,
structures, tags, etc. which are used, so you should always look them
up in the autodocs file (see

Autodocs
) and the C header file

‘Developer/Include/libraries/triton.h’.

The examples in this document assume that you’re using the C support
files with the SAS/C compiler. There may be differences in other
languages or even with other C development systems.

1.3 TritonDev.guide/INT_OOP

OOP Internals
=============

Although Triton offers a mostly procedural API, it is based on an
object-oriented system. As a Triton user you will never see Triton
objects directly, but instead reference them through IDs.

1.4 TritonDev.guide/INT_CLA

doc/TritonDev 4 / 19

Class Tree
==========

The following classes are available in Triton:

Object Abstract root class
‘-- DisplayObject Abstract class for window contents

+-- Button BOOPSI button gadget
+-- CheckBox GadTools CheckBox
+-- Cycle GadTools Cycle and MX gadget
+-- DropBox AppIcon dropping box
+-- FrameBox Framing or grouping box
+-- Group Triton’s layout engine
+-- Image Image
+-- Line 3D line
+-- Listview GadTools Listview
+-- Palette GadTools Palette gadget
+-- Progress Progress indicator
+-- Scroller GadTools Scroller
+-- Slider GadTools Slider
+-- Space Empty space
+-- String GadTools String gadget
‘-- Text Text

Descriptions for all classes can be found in the Triton autodocs
(see

Autodocs
) under ‘triton.library/class_<classname>’.

1.5 TritonDev.guide/INT_AUT

Autodocs
========

Documentation on all Triton classes and ‘triton.library’ functions
can be found in the Triton autodocs file
‘Developer/Autodocs/triton.doc’. The function descriptions follow the
usual syntax as used in the AmigaOS autodocs. The Triton classes are
listed with the prefix ‘triton.library/class_’ and are described using
the following keywords:

* ‘NAME’

The name of the class and a short description.

* ‘SUPERCLASS’

The superclass. If the comment ‘(no attributes inherited)’ is
added, all attributes (see below) are described in this autodoc
clip. Otherwise all attributes of the superclass are inherited.

* ‘SYNOPSIS’

doc/TritonDev 5 / 19

The tags which invoke the creation of an instance of the class.

* ‘ATTRIBUTES’

The attributes which are created for every instance of the class.
All attributes are listed with their tag names, except for the
default attribute which is listed as ‘<Default>’. See above for
superclass attributes.

* ‘MESSAGES’

This section describes all messages which objects of this class
are currently able to send. If no messages are described, this
doesn’t mean that none are sent. Not all class descriptions have
this section yet.

1.6 TritonDev.guide/TUT_APP

Tutorial

Applications
============

In order to use ‘triton.library’ you must first of all open it, like
any other shared library, as described in the ‘Amiga ROM Kernel
Reference Manual’, volume ‘Libraries’. Before quitting, you have to
close it again. Since release 1.1 ‘triton.library’ is a single-base
library, so you can share one instance of ‘triton.library’ between
several tasks. The following code makes sure that you can use functions
from ‘triton.library’ release 1.2 or higher:

#include <libraries/triton.h>
#include <clib/triton_protos.h>
#include <pragmas/triton_pragmas.h>

struct Library *TritonBase;

int main(void)
{

if(TritonBase=OpenLibrary(TRITONNAME,TRITON12VERSION))
{

/* Use functions from triton.library... */
CloseLibrary(TritonBase);

}
else
{

/* React on the error... */
}
return 0;

}

All Triton programs are based on a Triton application structure

doc/TritonDev 6 / 19

(struct TR_App). This structure is the connection which keeps all
Triton parts of your application together. Before using any other
Triton functions, you have to create a Triton application, and you must
delete it again before your program quits (and before you close
‘triton.library’ of course). Any Triton application must have at least
a short name, which is used by Triton to identify the application. All
other tags are optional. A typical code segment could look like this:

struct TR_App *myApp;

if(myApp=TR_CreateAppTags(
TRCA_Name, "MyApp",
TRCA_Release, "1.0",
TRCA_Version, "42.113",
TRCA_Date, "3.11.94",
TAG_END))

{
/* Use myApp for other Triton functions... */
TR_DeleteApp(myApp);

}
else
{

/* React on the error... */
}

The linker library ‘triton.lib’ offers an easier way to open
‘triton.library’ and create a Triton application structure. The two
examples from above can be combined into the following short version:

#include <libraries/triton.h>
#include <proto/triton.h>

int main(void)
{

if(TR_OpenTriton(TRITON12VERSION,
TRCA_Name, "MyApp",
TRCA_Release, "1.0",
TRCA_Version, "42.113",
TRCA_Date, "3.11.94",
TAG_END))

{
/* The opened application is called ’Application’ */
TR_CloseTriton();

}
else
{

/* React on the error... */
}
return 0;

}

1.7 TritonDev.guide/TUT_PRO

doc/TritonDev 7 / 19

Projects
========

A Triton Project is the next smaller entity of a Triton GUI.
Currently a project contains exactly one Intuition window, but in
future versions of Triton it could be possible to attach more windows
to a project. Upon opening a project, you have to specify all objects
which are to be displayed in the window, the window’s menu and some
tags describing window properties.

At first you have to specify the window properties, then the menus
and finally one (!) object. Normally this object will be a group which
contains other objects or groups.

Note that all tags are optional. You may just as well open a window
without any tags. This will result in a small window, consisting only
of the close and depth gadget and a small dragging bar, being opened on
the default public screen’s title bar.

As with naming Triton applications, you should give each project at
least a unique ID which is used by Triton e.g. for remembering the
window dimensions.

Opening and closing a project without any objects and menus could
look like this:

struct TagItem dummyTags=
{

TRWI_Title, (ULONG) "A dummy window",
TRWI_ID, 42,
TAG_END

};

void dummyFunction(void)
{

struct TR_Project *dummyProject;

if(dummyProject=TR_OpenProject(Application,dummyTags))
{

/* Opened successfully */
TR_CloseProject(dummyProject);

}
else
{

/* React on the error... */
}

}

Of course this way of opening a project via a static TagItem list
doesn’t allow to insert object parameters or localized strings. Since
you need these features most times, you should instead use a dynamical
TagList which is built on the stack at runtime. Be sure to set a large
enough stack! Some development systems offer an automatic stack setting
in their startup code, which comes handy in those situations. Please do
not rely on the user to set the stack!

And now back to our code, this time with a dynamic list. Imagine a

doc/TritonDev 8 / 19

function ‘STRPTR GetLocStr(int num)’ which gives you a localized string.

void dummyFunction(void)
{

struct TR_Project *dummyProject;

if(dummyProject=TR_OpenProjectTags(Application,
TRWI_Title, (ULONG) GetLocStr(MSG_WINTITLE_DUMMY),
TRWI_ID, 42,
TAG_END))

{
/* Opened successfully */
TR_CloseProject(dummyProject);

}
else
{

/* React on the error... */
}

}

The ID 42 in the above examples has been chosen randomly. This is no
problem as long as you stick to this ID in future updates of your
application. Otherwise the window dimensions would be wrong and the
user would have to adjust them again.

In order to not use IDs twice, it can be useful to enumerate them:

enum windowIDs {WINID_DUMMY=1, WINID_FOO, WINID_BAR};

Note that window IDs must be different from 0. 0 is equal to no ID
at all.

See the autodoc clip ‘triton.library/TR_OpenProject()’ for details
about the supported tags.

1.8 TritonDev.guide/TUT_MEN

Menus
=====

Any project definiton may contain menus. The menu tags must follow
the window tags immediately, before the object tags. If a menu has got
an object ID, the TRAT_ID tag must be the last one in the menu
definition. Object IDs are more than Project IDs. Project IDs are used
only internally by Triton. As an application programmer, you have to
reference Projects by a pointer to their ‘struct TR_Project’. Objects
instead are not referenced through pointers, but only through object
IDs. The same is true for menus, which use ordinary object IDs.

A typical menu defintion could look like this:

TR_OpenProjectTags(...
TRMN_Title, (ULONG) "Project",

TRMN_Item, (ULONG) "?_About", TRAT_ID, 1,

doc/TritonDev 9 / 19

TRMN_Item, (ULONG) TRMN_BARLABEL, TRAT_ID, 2,
TRMN_Item, (ULONG) "Q_Quit", TRAT_ID, 3,

...);

The title of a menu item or sub-item can be ‘TRMS_BARLABEL’ to
insert a standard separator bar. Keyboard shortcuts can be specified by
beginning the menu label with the shortcut key followed by an
underscore character and the real menu label. These simple shortcuts
(with the right Amiga key) are processed automatically. You can create
a so-called ’extended shortcut’ by starting a label with an underscore
character, then the text for the shortcut, another underscore and the
menu label. These extended shortcuts are only displayed with AmigaOS
3.0 or higher and they are not managed automatically. You have to
listen to incoming keyboard events in order to handle these shortcuts
yourself.

See the ‘Menus’ window of the Triton demo application for a more
detailed example on menus.

1.9 TritonDev.guide/TUT_OBJ

Objects
=======

The heart of every Triton GUI are the objects. Currently only
instances of subclasses of the ‘DisplayObject’ class can be created.
See

Class Tree
, for a short list of all classes. Detailed descriptions

can be found in the autodocs.

Objects are created by inserting an object tag into a project
definition. For example, a checked CheckBox object with an ID of 99
can be created the following way:

TROB_CheckBox, NULL,
TRAT_Value, (ULONG) TRUE,
TRAT_ID, 99,

All available tags are listed in the autodocs. The ‘<Default>’ tag’s
value has to be inserted directly in the ‘TROB_<Class>’ tag as its
data. All other tags are inserted normally after the initial class tag.

Note: It is useful to ‘enum’erate object IDs just like project
IDs. But in contrast to project IDs, object IDs may be used more than
once. If you use an object ID several times within the same project,
the objects with that ID will be linked together and whenever an
attribute (only selected attributes, notably ‘TRAT_Value’!) of one
object changes, this change will be broadcast to all other objects with
that ID as if you had notified them yourself with ‘TR_SetAttribute()’.
This is particularly useful to link a CheckBox gadget and a checkable
menu item together.

See the ‘Connections’ window of the Triton demo application for a

doc/TritonDev 10 / 19

more detailed example on attribute broadcasting.

1.10 TritonDev.guide/TUT_LAY

Layout
======

One of the most important classes is ‘Group’. It implements Triton’s
layout engine.

‘Group’ objects offer two kinds of directions:

1. Horizontal (primary direction; secondary direction is vertical).
Created with ‘TRGR_Horiz’.

2. Vertical (primary direction; secondary direction is horizontal)
Created with ‘TRGR_Vert’.

3 different layout types are available for each instance of ‘Group’
(adjustable with the group flags). They affect the primary direction
only:

1. ‘TRGR_PROPSHARE’: Divides all objects proportionally to their
minimum size. All spaces retain their minimum size and are not
resizable. Non-resizable non-space objects do also stick to their
minimum sizes (well, they don’t really have a choice, do they? ;).

2. ‘TRGR_EQUALSHARE’: Same as ‘TRGR_PROPSHARE’ except that all
non-space objects have the same size. Their minimum size equals
the biggest minimum size of the individual objects.

3. ‘TRGR_PROPSPACES’: All non-space objects retain their minimum
sizes all the time and do not get stretched. Instead the spaces
are stretched proportionally to their minimum sizes.

4. ‘TRGR_ARRAY’: This group builds the top group of an array. In order
to create an array, you have to set up an outer ‘TRGR_ARRAY’ group
(horizontal for a column array, vertical for a line array) and
fill it with single objects (notably spaces) or ‘TRGR_PROPSHARE’
groups in the opposite direction. All elements of the inner groups
will be aligned to build an array. Inner groups which have the
flag ‘TRGR_INDEP’ set will not be aligned. They are mainly used to
insert named separator bars (created with ‘TROB_Line’ and
‘TROB_Text’) into an array.

Currently the only objects which are treated as spaces in the above
scheme are instances of class ‘Space’.

The behaviour of the group in its secondary direction can be
changed, too. Two additional flags are available for that purpose. In
most cases you may want to set both of them:

1. ‘TRGR_ALIGN’: All resizable objects (i.e. resizable in the

doc/TritonDev 11 / 19

secondary dimension of the group) are strechted to fit the full
space occupied by the group.

2. ‘TRGR_CENTER’: All non-resizable objects are centered in the group.
Without this flag they get aligned to the left or top border.

It is also possible to keep a group at its minimum size and don’t
allow it to be stretched in either or both directions. This can be
accomplished with the ‘TRGR_FIXHORIZ’ and ‘TRGR_FIXVERT’ flags.

A group can be created like any other object. It takes other objects
as its arguments. Every group has to be terminated with a ‘TRGR_End’
tag. A typical horizontal group, which contains a CheckBox, a space and
again a CheckBox, would look like this:

TRGR_Horiz, TRGR_PROPSHARE|TRGR_ALIGN|TRGR_CENTER,

TROB_CheckBox, 0,
TRAT_ID, 1,

TROB_Space, TRST_NORMAL,

TROB_CheckBox, 0,
TRAT_Value, TRUE,
TRAT_ID, 2,

TRGR_End, 0

See the ‘Groups’ window of the Triton demo application for a more
detailed example on groups and arrays.

1.11 TritonDev.guide/TUT_MAC

Macros
======

The C header file ‘Developer/Include/libraries/triton.h’ contains
quite a lot of macro definitions which make creating a Triton GUI much
easier. With the help of the preprocessor ‘Mac2E’ these macros are also
available in ‘AmigaE’. Other languages or compilers may support similar
or different macros or none at all. If no macros are available in your
development system, you have to do it the traditional way. If you can
use macros, use them.

The static taglist definition can be written a bit simpler with
macros:

ProjectDefinition(dummyTags)
{

/* Insert project tags here */
};

But the main use for macros are the tags themselves. For example,
the tags from the dummy window example (see

doc/TritonDev 12 / 19

Projects
) would look like

this:

WindowTitle("A dummy window"),
WindowID(42),
EndProject

Have a look at the macro definitions and the supplied demo
applications for more detailed information about the macros.

1.12 TritonDev.guide/TUT_POL

Polling Loop
============

After creating a GUI you have to handle user input. In order to
accomplish this task, Triton offers a polling system which resembles
the Intuition IDCMP polling system very much. A basic polling loop
looks like this:

void handleDummyWindow(void)
{

BOOL closeMe=FALSE;
struct TR_Message *trMsg;

/* Open the window... */

while(!closeMe)
{

TR_Wait(Application,NULL);
while(trMsg=TR_GetMsg(Application))
{

switch(trMsg->trm_Class)
{

case TRMS_CLOSEWINDOW:
closeMe=TRUE;
break;

case TRMS_ACTION:
switch(trmsg->trm_ID)
{

case ID_FOO:
/* Do something... */
break;

case ID_BAR:
/* Do something... */
break;

}
break;

case TRMS_NEWVALUE:
switch(trMsg->trm_ID)

doc/TritonDev 13 / 19

{
/* New value is in trMsg->trm_Data */

case ID_MYCHECKBOX:
/* Do something... */
break;

case ID_MYSLIDER:
/* Do something... */
break;

}
break;

case TRMS_ERROR:
puts(TR_GetErrorString(trMsg->trm_Data));
break;

}
TR_ReplyMsg(trMsg);

}
}

/* Close the window... */
}

Note: Don’t forget to reply all messages!

You could add a ‘switch()’ for the project which sent the message if
you have more than one project opened, but a better way is to use unique
object IDs. This does also yield the advantage that moving an object
from one window to another does not require any change in the message
handling.

It is currently not very well documented which messages are sent by
the different objects. As a general rule, activatable objects send
‘TRMS_ACTION’ and objects which have a ‘TRAT_Value’ or a similar
modifiable tag, send ‘TRMS_NEWVALUE’.

Here is a more detailed description of the message types:

* ‘TRMS_CLOSEWINDOW’: The user has pressed the close gadget or the
‘Esc’ key (if it hasn’t been disabled with ‘TRWF_NOESCCLOSE’).

* ‘TRMS_ERROR’: An error occured. ‘TR_Message.trm_Data’ contains the
error code. You can use ‘TR_GetErrorString()’ to generate a
user-readable error message from this error code.

* ‘TRMS_NEWVALUE’: An object’s attribute has changed.
‘TR_Message.trm_Data’ contains the new value for the attribute.

* ‘TRMS_ACTION’: An object has been activated somehow (e.g. a button
has been pressed or its keyboard shortcut was used instead).

* ‘TRMS_ICONDROPPED’: An icon has been dropped over a window. You
will get this message only if an object in your window reacts on
dropped icons or you ask directly for it by specifying the project
flag ‘TRWF_APPWINDOW’. Otherwise Workbench will not allow you to
drop icons over a Triton window. ‘TR_Message.trm_ID’ contains the
ID of the object over which the icon was dropped or 0 if it was

doc/TritonDev 14 / 19

dropped over an object without an ID. ‘TR_Message.trm_Data’
contains a pointer to the ‘struct AppMessage’ which was sent by
Workbench.

* ‘TRMS_KEYPRESSED’: A key has been pressed and Triton was not able
to identify it (e.g. as a keyboard shortcut).
‘TR_Message.trm_Data’ contains the ASCII code (if available,
otherwise 0), ‘TR_Message.trm_Code’ contains the RawKey code and
‘TR_Message.trm_Qualifier’ the qualifier bits.

* ‘TRMS_HELP’: The user requests help for the object specified by
‘TR_Message.trm_ID’ or for the whole window if the ID is 0.

A description of all fields of the ‘TR_Message’ structure can be
found in the C header file ‘Developer/Include/libraries/triton.h’.

1.13 TritonDev.guide/TUT_MES

Messages
========

Sometimes you may wish to query an object’s attribute directly
without waiting in a polling loop and then putting it down somewhere
else. This is especially useful for string gadgets. You should *not*
read their contents when you receive a ‘TRMS_NEWVALUE’ message, because
it is possible to exit a string gadget without triggering such a
message. Instead you have to read the contents directly before you need
them.

Attributes can be read with the ‘TR_GetAttribute()’ function, which
will return the value of an object’s or project’s attribute. Specify
the object’s ID or 0 for a project attribute. You can get the default
attribute of an object by setting ‘Attribute’ to 0. Otherwise set it to
an attribute tag.

Setting a new attribute works just the same way with the function
‘TR_SetAttribute()’. Again you may also modify project attributes. See
the autodoc clip for a list of them. After setting a new attribute the
on-screen representation of it will be updated if necessary.

If you want to send custom object messages (‘TR_SetAttribute()’ and
‘TR_GetAttribute()’ invoke the messages ‘TRDM_SETATTRIBUTE’ and
‘TRDM_GETATTRIBUTE’), you have to use ‘TR_SendMessage()’. The autodocs
will tell you which classes accept which messages.

Note: Do not confuse ‘Object Messages’ (‘TROM_...’) which are sent
to Triton objects with ‘Triton messages’ (‘TRMS_...’) which you receive
in your polling loop.

1.14 TritonDev.guide/TUT_HEL

doc/TritonDev 15 / 19

Help
====

Triton offers two ways of providing help for the user of a Triton
application:

* QuickHelp

‘QuickHelp’ creates and handles requester bubbles (actually they
are implemented as rectangular boxes at the moment). All you have
to do is provide a ‘TRDO_QuickHelpString’ attribute for every
object which should have QuickHelp available. Then switch on
QuickHelp with ‘TRWI_QuickHelp’ (can be set when opening a project
or modified later with ‘TR_SetAttribute()’). When the user moves
the mouse pointer over an object which has a QuickHelp string
attached, a small window will pop up near the object where the
mouse pointer is located. This window contains the specified
QuickHelp string. As soon as the mouse pointer leaves the borders
of the object, the help window will disappear.

* Manual help

If you set ‘TRWF_HELP’ when opening a project, you will receive a
‘TRMS_HELP’ message whenever the user presses the ‘Help’ key. As
usual ‘TR_Message.trm_ID’ contains the ID of the object for which
the user requested help or 0 if no object could be assigned to the
help request (you should normally provide help for the whole window
in that case). The most common way to react on ‘TRMS_HELP’ is to
pop up an AmigaGuide document describing the object for which the
user requested help. If you do not want to provide more extensive
help than you do with the QuickHelp feature (see above), you can
also pop up a requester containing the QuickHelp string for the
specified object. The main window of the main Triton demo
application shows how to do that.

1.15 TritonDev.guide/TUT_REQ

Requesters
==========

Triton offers two requester functions:

* ‘TR_EasyRequest()’ creates and handles a simple requester with
some lines of text (different text styles are possible) and a row
of buttons at the lower end. You should use this function whenever
possible. Not only is it easier to use than ‘TR_AutoRequest()’,
but it could be made user-configurable in future Triton releases.

* ‘TR_AutoRequest()’ is a simple message polling loop which opens a
Triton window, waits until a ‘TRMS_ACTION’ message comes in and
returns the ID of the object which triggered the message. This
function is often used in combination with the requester macros
(‘BeginRequester()’, ‘BeginRequesterGads’ and ‘EndRequester’).

doc/TritonDev 16 / 19

Please consult the autodocs for more detailed information about these
functions. The main demo application contains examples for both types
of requesters.

If you need a more sophisticated requester (e.g. a string requester),
you have to use your own message polling loop (see

Polling Loop
). You

may still use the requester macros though.

1.16 TritonDev.guide/STY_OVE

Style Guide

Guidelines
==========

Please keep the following general rules in mind when designing and
implementing a GUI with Triton:

* Window size

Please make sure that all windows of your GUI fit on a standard
‘PAL Hires’ screen (640*256) with ‘topaz.font’ in size 8.

* Keyboard shortcuts

Please add keyboard shortcuts to as many gadgets and menus as
possible. It is very annoying for a user who works without a
mouse most of the time to grab his mouse just because you forgot
to add keyboard shortcuts.

* Test your GUI

You should always test your GUI with different font sizes
(especially fixed-width and proportional fonts with different
heights) and a non-standard window background to avoid making
assumptions about the layout and coloring of your GUI resulting
from observed behaviour, which is quite often wrong. Take special
care not to use text spaces for spacing in your GUI (e.g. in array
labels).

* Stack size

If your application requires a stack size above 4096 bytes (e.g.
because of a huge TagList with a Triton project definition, which
is created on the stack during runtime), make sure that the stack
does indeed have that size. Some development systems offer an
automatic stack setting in their startup code, which comes handy
in those situations. Please do not rely on the user to set the
stack!

doc/TritonDev 17 / 19

* And finally:

Don’t forget the ‘Amiga User Interface Style Guide’...

1.17 TritonDev.guide/ODD_FAQ

Odds & Ends

FAQ
===

Here are some frequesntly asked questions and their answers:

1. Q: Why shouldn’t I use a simple ‘TR_Wait()’ for dummy windows?

A: Triton has to process inputs from Intuition. This is done in
‘TR_GetMsg()’. But of course you have to call this functions so
that Triton can process its input. After ‘TR_Wait()’ returns, you
have to run though a ‘while(TR_GetMsg())’ loop as usual. An easier
way to create a dummy window is using ‘TR_AutoRequest()’.

2. Q: How do I handle a progress indicator?

A: As already explained in answer 1, you have to call ‘TR_GetMsg()’
regularly. When a progress indicator is displayed, you should
update it regularly and run through a ‘while(TR_GetMsg())’ loop
every time. See the supplied Progress Indicator demo application
for details.

3. Q: How do I activate a string gadget?

A: Beginning with Triton 1.3 (V4) you can use
‘TR_SendMessage(Project,ID,TROM_ACTIVATE,NULL)’.

1.18 TritonDev.guide/Index

Index

Answers
ODD_FAQ

Applications
TUT_APP

Attribute
TUT_MES

doc/TritonDev 18 / 19

Autodocs
INT_AUT

Class Tree
INT_CLA

FAQ
ODD_FAQ

Frequently Asked Questions
ODD_FAQ

Get
TUT_MES

Guide, Style
STY_OVE

Guidelines
STY_OVE

Help
TUT_HEL

Introduction
INT_OVE

Layout
TUT_LAY

Linking
TUT_OBJ

Loop, Polling
TUT_POL

Macros
TUT_MAC

Menus
TUT_MEN

Message
TUT_MES

Modify
TUT_MES

Notification
TUT_OBJ

Objects
TUT_OBJ

OOP Internals
INT_OOP

doc/TritonDev 19 / 19

Overview
INT_OVE

Polling Loop
TUT_POL

Projects
TUT_PRO

Query
TUT_MES

Questions
ODD_FAQ

QuickHelp
TUT_HEL

Requesters
TUT_REQ

Set
TUT_MES

Style Guide
STY_OVE

Tutorial
TUT_APP

	doc/TritonDev
	doc/TritonDev.guide
	TritonDev.guide/INT_OVE
	TritonDev.guide/INT_OOP
	TritonDev.guide/INT_CLA
	TritonDev.guide/INT_AUT
	TritonDev.guide/TUT_APP
	TritonDev.guide/TUT_PRO
	TritonDev.guide/TUT_MEN
	TritonDev.guide/TUT_OBJ
	TritonDev.guide/TUT_LAY
	TritonDev.guide/TUT_MAC
	TritonDev.guide/TUT_POL
	TritonDev.guide/TUT_MES
	TritonDev.guide/TUT_HEL
	TritonDev.guide/TUT_REQ
	TritonDev.guide/STY_OVE
	TritonDev.guide/ODD_FAQ
	TritonDev.guide/Index

